Kamis, 26 Januari 2012

Fisika Atom

Fisika Atom

Sifat Partikel dari Cahaya: Efek Fotolistrik

Pernahkah kamu melihat pelangi? Pernahkah kamu melihat warna-warni di jalan aspal yang basah? Pelangi terjadi akibat dispersi cahaya matahari pada titik-titik air hujan. Adapun warna-warni yang terlihat di jalan beraspal terjadi akibat gejala interferensi cahaya. Gejala dispersi dan interferensi cahaya menunjukkan bahwa cahaya merupakan gejala gelombang. Gejala difraksi dan polarisasi cahaya juga menunjukkan sifat gelombang dari cahaya.

pola warna-warni di atas aspal basah yang dikenai bensin terjadi akibat interferensi cahaya

Gejala fisika yang lain seperti spektrum diskrit atomik, efek fotolistrik, dan efek Compton menunjukkan bahwa cahaya juga dapat berperilaku sebagai partikel. Sebagai partikel cahaya disebut dengan foton yang dapat mengalami tumbukan selayaknya bola.

Efek Fotolistrik
Ketika seberkas cahaya dikenakan pada logam, ada elektron yang keluar dari permukaan logam. Gejala ini disebut efek fotolistrik. Efek fotolistrik diamati melalui prosedur sebagai berikut. Dua buah pelat logam (lempengan logam tipis) yang terpisah ditempatkan di dalam tabung hampa udara. Di luar tabung kedua pelat ini dihubungkan satu sama lain dengan kawat. Mula-mula tidak ada arus yang mengalir karena kedua plat terpisah. Ketika cahaya yang sesuai dikenakan kepada salah satu pelat, arus listrik terdeteksi pada kawat. Ini terjadi akibat adanya elektron-elektron yang lepas dari satu pelat dan menuju ke pelat lain secara bersama-sama membentuk arus listrik.

Hasil pengamatan terhadap gejala efek fotolistrik memunculkan sejumlah fakta yang merupakan karakteristik dari efek fotolistrik. Karakteristik itu adalah sebagai berikut.
  1. hanya cahaya yang sesuai (yang memiliki frekuensi yang lebih besar dari frekuensi tertentu saja) yang memungkinkan lepasnya elektron dari pelat logam atau menyebabkan terjadi efek fotolistrik (yang ditandai dengan terdeteksinya arus listrik pada kawat). Frekuensi tertentu dari cahaya dimana elektron terlepas dari permukaan logam disebut frekuensi ambang logam. Frekuensi ini berbeda-beda untuk setiap logam dan merupakan karakteristik dari logam itu.
  2. ketika cahaya yang digunakan dapat menghasilkan efek fotolistrik, penambahan intensitas cahaya dibarengi pula dengan pertambahan jumlah elektron yang terlepas dari pelat logam (yang ditandai dengan arus listrik yang bertambah besar). Tetapi, Efek fotolistrik tidak terjadi untuk cahaya dengan frekuensi yang lebih kecil dari frekuensi ambang meskipun intensitas cahaya diperbesar.
  3. ketika terjadi efek fotolistrik, arus listrik terdeteksi pada rangkaian kawat segera setelah cahaya yang sesuai disinari pada pelat logam. Ini berarti hampir tidak ada selang waktu elektron terbebas dari permukaan logam setelah logam disinari cahaya.
Karakteristik dari efek fotolistrik di atas tidak dapat dijelaskan menggunakan teori gelombang cahaya. Diperlukan cara pandang baru dalam mendeskripsikan cahaya dimana cahaya tidak dipandang sebagai gelombang yang dapat memiliki energi yang kontinu melainkan cahaya sebagai partikel.

Perangkat teori yang menggambarkan cahaya bukan sebagai gelombang tersedia melalui konsep energi diskrit atau terkuantisasi yang dikembangkan oleh Planck dan terbukti sesuai untuk menjelaskan spektrum radiasi kalor benda hitam. Konsep energi yang terkuantisasi ini digunakan oleh Einstein untuk menjelaskan terjadinya efek fotolistrik. Di sini, cahaya dipandang sebagai kuantum energi yang hanya memiliki energi yang diskrit bukan kontinu yang dinyatakan sebagai E = hf.

Konsep penting yang dikemukakan Einstein sebagai latar belakang terjadinya efek fotolistrik adalah bahwa satu elektron menyerap satu kuantum energi. Satu kuantum energi yang diserap elektron digunakan untuk lepas dari logam dan untuk bergerak ke pelat logam yang lain. Hal ini dapat dituliskan sebagai
Energi cahaya = Energi ambang + Energi kinetik maksimum elektron
E = W0 + Ekm
hf = hf0 + Ekm
Ekm = hfhf0

Persamaan ini disebut persamaan efek fotolistrik Einstein. Perlu diperhatikan bahwa W0 adalah energi ambang logam atau fungsi kerja logam, f0 adalah frekuensi ambang logam, f adalah frekuensi cahaya yang digunakan, dan Ekm adalah energi kinetik maksimum elektron yang lepas dari logam dan bergerak ke pelat logam yang lain. Dalam bentuk lain persamaan efek fotolistrik dapat ditulis sebagai

Dimana m adalah massa elektron dan ve adalah dan kecepatan elektron. Satuan energi dalam SI adalah joule (J) dan frekuensi adalah hertz (Hz). Tetapi, fungsi kerja logam biasanya dinyatakan dalam satuan elektron volt (eV) sehingga perlu diingat bahwa 1 eV = 1,6 × 10−19 J.


Potensial Penghenti
Gerakan elektron yang ditandai sebagai arus listrik pada gejala efek fotolistrik dapat dihentikan oleh suatu tegangan listrik yang dipasang pada rangkaian. Jika pada rangkaian efek fotolistrik dipasang sumber tegangan dengan polaritas terbalik (kutub positif sumber dihubungkan dengan pelat tempat keluarnya elektron dan kutub negatif sumber dihubungkan ke pelat yang lain), terdapat satu nilai tegangan yang dapat menyebabkan arus listrik pada rangkaian menjadi nol.

Arus nol atau tidak ada arus berarti tidak ada lagi elektron yang lepas dari permukaan logam akibat efek fotolistrik. Nilai tegangan yang menyebabkan elektron berhenti terlepas dari permukaan logam pada efek fotolistrik disebut tegangan atau potensial penghenti (stopping potential). Jika V0 adalah potensial penghenti, maka
Ekm = eV0

Persamaan ini pada dasarnya adalah persamaan energi. Perlu diperhatikan bahwa e adalah muatan elektron yang besarnya 1,6 × 10−19 C dan tegangan dinyatakan dalam satuan volt (V).

Aplikasi Efek fotolistrik
Efek fotolistrik merupakan prinsip dasar dari berbagai piranti fotonik (photonic device) seperti lampu LED (light emitting device) dan piranti detektor cahaya (photo detector).

Model Atom Mekanika Kuantum

Penjelasan tentang struktur atom yang lebih lengkap diperlukan untuk mengetahui struktur yang lebih detil tentang elektron di dalam atom. Model atom yang lengkap harus dapat menerangkan misteri efek Zeeman dan sesuai untuk atom berelektron banyak. Dua gejala ini tidak dapat diterangkan oleh model atom Bohr.

Efek Zeeman
Spektrum garis atomik teramati saat arus listrik dialirkan melalui gas di dalam sebuah tabung lecutan gas. Garis-garis tambahan dalam spektrum emisi teramati jika atom-atom tereksitasi diletakkan di dalam medan magnet luar. Satu garis di dalam spektrum garis emisi terlihat sebagai tiga garis (dengan dua garis tambahan) di dalam spektrum apabila atom diletakkan di dalam medan magnet. Terpecahnya satu garis menjadi beberapa garis di dalam medan magnet dikenal sebagai efek Zeeman.
pemisahan garis spektrum atomik di dalam medan magnet
pemisahan garis spektrum atomik di dalam medan magnet

Efek Zeeman tidak dapat dijelaskan menggunakan model atom Bohr. Dengan demikian, diperlukan model atom yang lebih lengkap dan lebih umum yang dapat menjelaskan efek Zeeman dan spektrum atom berelektron banyak.

Model Atom Mekanika Kuantum
Sebelumnya kita sudah membahas tentang dualisme gelombang-partikel yang menyatakan bahwa sebuah objek dapat berperilaku baik sebagai gelombang maupun partikel. dalam skala atomik, elektron dapat kita tinjau sebagai gejala gelombang yang tidak memiliki posisi tertentu di dalam ruang. Posisi sebuah elektron diwakili oleh kebolehjadian atau peluang terbesar ditemukannya elektron di dalam ruang.
Demi mendapatkan penjelasan yang lengkap dan umum dari struktur atom, prinsip dualisme gelombang-partikel digunakan. Di sini gerak elektron digambarkan sebagai sebuah gejala gelombang. Persamaan dinamika Newton yang sedianya digunakan untuk menjelaskan gerak elektron digantikan oleh persamaan Schrodinger yang menyatakan fungsi gelombang untuk elektron. Model atom yang didasarkan pada prinsip ini disebut model atom mekanika kuantum.
posisi dan keberadaan elektron di dalam atom dinyatakan sebagai peluang terbesar elektron di dalam atom
posisi dan keberadaan elektron di dalam atom dinyatakan sebagai peluang terbesar elektron di dalam atom

Persamaan Schrodinger untuk elektron di dalam atom dapat memberikan solusi yang dapat diterima apabila ditetapkan bilangan bulat untuk tiga parameter yang berbeda yang menghasilkan tiga bilangan kuantum. Ketiga bilangan kuantum ini adalah bilangan kuantum utama, orbital, dan magnetik. Jadi, gambaran elektron di dalam atom diwakili oleh seperangkat bilangan kuantum ini.

Bilangan Kuantum Utama
Dalam model atom Bohr, elektron dikatakan berada di dalam lintasan stasioner dengan tingkat energi tertentu. Tingkat energi ini berkaitan dengan bilangan kuantum utama dari elektron. Bilangan kuantum utama dinyatakan dengan lambang n sebagaimana tingkat energi elektron pada lintasan atau kulit ke-n. untuk atom hidrogen, sebagaimana dalam model atom Bohr, elektron pada kulit ke-n memiliki energi sebesar
bilkuantum01 
Adapun untuk atom berelektron banyak (terdiri atas lebih dari satu elektron), energi elektron pada kulit ke-n adalah
bilkuantum02 
Dimana Z adalah nomor atom. Nilai-nilai bilangan kuantum utama n adalah bilangan bulat mulai dari 1.
n = 1, 2, 3, 4, ….
Bisa dikatakan bahwa bilangan kuantum utama berkaitan dengan kulit elektron di dalam atom. Bilangan kuantum utama membatasi jumlah elektron yang dapat menempati satu lintasan atau kulit berdasarkan persamaan berikut.
 Jumlah maksimum elektron pada kulit ke-n adalah 2n2

Bilangan Kuantum Orbital
Elektron yang bergerak mengelilingi inti atom memiliki momentum sudut. Efek Zeeman yang teramati ketika atom berada di dalam medan magnet berkaitan dengan orientasi atau arah momentum sudut dari gerak elektron mengelilingi inti atom. Terpecahnya garis spektum atomik menandakan orientasi momentum sudut elektron yang berbeda ketika elektron berada di dalam medan magnet.
zeeman_8k_400_3001 
Tiap orientasi momentum sudut elektron memiliki tingkat energi yang berbeda. Meskipun kecil perbedaan tingkat energi akan teramati apabila atom berada di dalam medan magnet. Momentum sudut elektron dapat dinyatakan sebagai

bilkuantum03 
Dimana
bilkuantum04 
Bilangan l disebut bilangan kuantum orbital. Jadi, bilangan kuantum orbital l menentukan besar momentum sudut elektron. Nilai bilangan kuantum orbital l adalah
l = 0, 1, 2, 3, … (n – 1)
misalnya, untuk n = 2, nilai l yang diperbolehkan adalah l = 0 dan l = 1.

Bilangan Kuantum Magnetik
Momentum sudut elektron L merupakan sebuah vektor. Jika vektor momentum sudut L diproyeksikan ke arah sumbu yang tegak atau sumbu-z secara tiga dimensi akan didapatkan besar komponen momentum sudut arah sumbu-z dinyatakan sebagai Lz. bilangan bulat yang berkaitan dengan besar Lz adalah m. bilangan ini disebut bilangan kuantum magnetik. Karena besar Lz bergantung pada besar momentum sudut elektron L, maka nilai m juga berkaitan dengan nilai l.
m = −l, … , 0, … , +l
misalnya, untuk nilai l = 1, nilai m yang diperbolehkan adalah −1, 0, +1.

Bilangan Kuantum Spin
Bilangan kuantum spin diperlukan untuk menjelaskan efek Zeeman anomali. Anomali ini berupa terpecahnya garis spektrum menjadi lebih banyak garis dibanding yang diperkirakan. Jika efek Zeeman disebabkan oleh adanya medan magnet eksternal, maka efek Zeeman anomali disebabkan oleh rotasi dari elektron pada porosnya. Rotasi atau spin elektron menghasilkan momentum sudut intrinsik elektron. Momentum sudut spin juga mempunyai dua orientasi yang berbeda, yaitu spin atas dan spin bawah. Tiap orientasi spin elektron memiliki energi yang berbeda tipis sehingga terlihat sebagai garis spektrum yang terpisah.
garis spektra atom yang terpisah di dalam medan magnet berasal dari spin elektron
garis spektra atom yang terpisah di dalam medan magnet berasal dari spin elektron

Spin elektron diwakili oleh bilangan kuantum tersendiri yang disebut bilangan kuantum magnetik spin (atau biasa disebut spin saja). Nilai bilangan kuantum spin hanya boleh satu dari dua nilai +½ atau −½. jika ms adalah bilangan kuantum spin, komponen momentum sudut arah sumbu-z dituliskan sebagai
Sz = msћ
Dimana
bilkuantum05
Spin ke atas dinyatakan dengan
bilkuantum06
Spin ke bawah dinyatakan dengan
bilkuantum07
Atom Berelektron Banyak
Model atom mekanika kuantum dapat digunakan untuk menggambarkan struktur atom untuk atom berelektron banyak. Posisi atau keadaan elektron di dalam atom dapat dinyatakan menggunakan seperangkat (empat) bilangan kuantum. Misalnya, elektron dengan bilangan kuantum n = 2, l = 1, m = −1 dan ms = −½ menyatakan sebuah elektron pada kulit L, subkulit p, orbital −1 dengan arah spin ke bawah.

Tidak ada komentar:

Posting Komentar